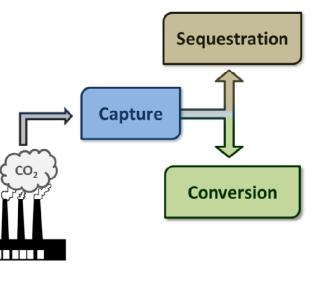


Electrochemical Reduction of CO₂ to Hydrocarbons in Microchannel Reactors with Ionic Liquids

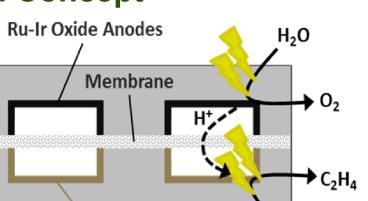

Authors: Brian T Skinn^{1*}, Sujat Sen², Holly M. Garich¹, Fikile R Brushett², E. Jennings Taylor¹

¹ Faraday Technology, Inc., Englewood, OH² Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA *Principal Investigator: BrianSkinn@FaradayTechnology.com, (937) 836-7749

Funding: Department of Energy SBIR Contract No. DE-SC0015812, TPOC: José Figueroa (jose.figueroa@netl.doe.gov)

Problem

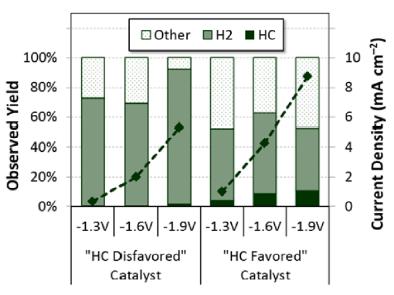
 Conversion of carbon dioxide to high-value products using low-quality heat sources requires development of efficient conversion methods capable of high rates.



Technical Approach

- Stackable-plate electroreactor for CO₂ -> hydrocarbon (HC) conversion
- Novel activated-copper cathodic catalyst
- Commercial mixed-oxide anodic catalyst
- Exploit scalable, low-cost electrodeposition fabrication methods
- Power via Peltier-effect devices to exploit low-quality energy sources

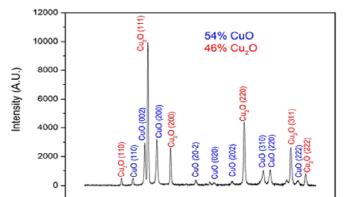
Electroreactor Design Concept


- FARADAYIC[®] Through-Mask Etching of reactor flow channels
- Cu cathodic catalyst
 - FARADAYIC[®] ElectroDeposition of copper
 - Optimized literature activation

CO₂

Prior Results

- Constant-potential electrolysis in CO₂-saturated 0.5 M aqueous NaHCO₃
- Catalyst preparation influences selectivity and total current density
- Hydrogen evolution still appreciable



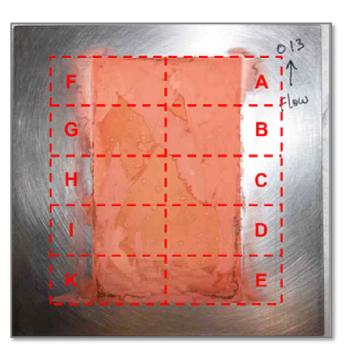
(All potentials vs. Ag/AgCl reference)

Electrocatalyst Materials Analysis

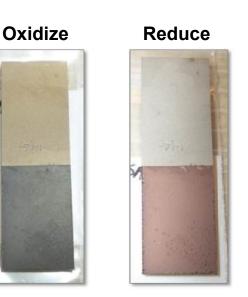
• XRD – Cu / Cu₂O / CuO content of films

XRD

- method
- Mixed metal oxide anodic catalyst
 - Standard application method: painting and thermal consolidation
 - Low overpotential for water oxidation
- Ion exchange membrane separator
- Wet ionic liquid electrolyte for enhanced CO₂ solubility and expanded electrochemical window



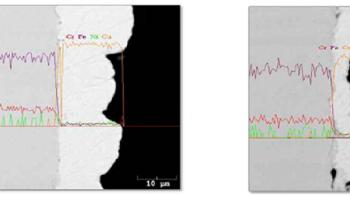
Activated Cu Cathodes


Copper Electrocatalyst Fabrication

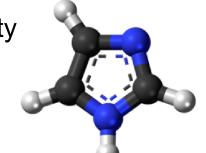
- Deposit Cu on 4"× 4" SS304 panels
 - FARADAYIC[®] ElectroDeposition Cell
- Section panels into coupons
- Activate Cu by thermal oxidation and electrochemical reduction

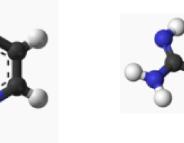
Li and Kanan. J Am Chem Soc. 134: 7231, 2012

Electrocatalysis Performance Evaluation



- SEM/EDS Morphology and composition





Ionic Liquid Selection/Evaluation

- Imidazolium family selected for Phase I experimentation
- Key properties include:
 - Physical: Rheology, CO₂ solubility, HC solubility
 - (Electro)chemical: Stability, Potential window

- Preliminary research on other IL families
 - Pyridinium
 - Guanidinium
 - Others

Thermal/Electrical/Economic Analysis

• Develop spreadsheet model for power, material, etc. inputs - Estimate stack performance, footprint, etc.

	A	В	С
2	Assumed Overpotential Required:	0.5	
3	Assumed Current Density	2mA	/cm^2 active area
4	Thermodynamic Potential Limit:	1.06	
5	Electrons transferred per CO2 converted:	8e/C	:02
6	Coulombs to convert basis:	222.4559674C/s	
7	Power Required	347.0313091W	
8	Energy Consumed	347.0313091J/s	
9	Energy Consumed	29983.5051kJ/	day
10	Energy Consumed	8.328751418kW	h/day
11	Solar Panel Area Needed	17.35156545m^	2
12	Active Area of Catalyst	11.12279837m [^]	2
13	Est'd active channel wall part-perimeter	3.2mm	1
14	Total channel arc length required	3475.87449m	

• Electroanalysis (CV, CA, etc.) • GC assay of product gases • UV/Vis analysis of formate

- Optimization targets:
 - Hydrocarbon selectivity
 - Current density
 - Catalyst durability

Apply spreadsheet CapEx / OpEx model

Production Scales	EA/pCP	LRIP	MRCP
		OpEx	
	Part Geometry & Preparation		
Plates per Panel Row	3	4	4
Rows of Plates Per Panel	3	5	5
Panel Size	15"x15"	18"x24"	18"x24"
Stock Material Size	18"x18"	24"x24"	24"x24"
Netal cost per stock sheet	\$38.97	\$121.40	\$121.40
Panels per sheet	1	1	1
Pre-Etch cuts per panel	2	1	1
Post-Etch cuts per panel	16	29	29

OpEx Output	OpEx Outputs		
Per-Plate Materials	\$15.08		
Per-Plate Active Labor	\$1.39		
Per-Plate Idle Labor	\$0.01		
Per-Plate Shipping	\$0.40		
Per-Plate Electricity	\$0.06		
Per-Plate Total	\$16.94		

CapEx Outputs			
Rectification	\$580,430		
Tank(s) / Fixturing	\$40,000		